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We adapt the inverse power method to the solution of the
gigenvalue problem associated with recently developed forms of
coupled two-body Dirac equations. A Pauli reduction of these equa-
tions leads to coupled Schrodinger-like equations which we solve
using central difference methods. Our adaptation therefore requires
an efficient inversion of large blocked and banded matrices and
{for the case of interactions devived from lowest order guantum
clectrodynamics we show how this method can be used, in conjunc-
tion with logarithmic sealing and Padg extrapolation techniques,
to obtain numerical solutions for the positronium and muoniuem
spectrum that agree with perturbation theory through order mao*

twith error on the order of ma®). © 1994 Academic Press, Inc.

L. INTRODUCTION

Bona fide relativistic bound slate wave equations have the
feature that a nonperturbative solution {analytic or numerical)
of the eigenvalue spectrum yields the same results to an appro-
prigte order in a given coupling constant as does a perturbative
treatment of these same equations. The prototype of such an
equation is the one-body Birac equation. This equation has an
cxact solution for a charged spin-one-half point particle in
an external Coulomb field. The analytically derived spectrum
agrees through order o in the fine structure constant with that
found by a perturbative treatment of the Darwin and spin-orbit
terms obtained from the usual Pauli reduction of the Dirac
equation [ 11, This contrasts with the situation involving Breit’s
two-body Dirac cquation [2]. A nonperturbative solution of this
equation docs not yield the same spectrum that a Pauli reduction
and subsequeint perturbative treatment of this equation does | 3]

There has been, as far as we know, only one analytic treal-
ment of a two-body relativistic wave equation with a spectrum
correct through order mae’. The two-body Dirac equations of
constraint dynamics (4, 5| for the e*e” system in the 'J; states
|6, 7] give the total energy w in the center of momentum
(c.m.} system

W= m\/z + 2V + on + VI —at =1 %)

=2m—-—— el +—
45t 20721+ D) 64 ot

These two-body Dirac equations have the advantage of being
local equations but, with the exception of this exact solution,
have notbeen tested numerically for QED systems until recently
V710 I previous work it was tacitly assumed (without checking )
that a nonperturbative, numerical reatment of the constraim
eyuations for standard field theoretic input would yield standard
perturbative spectral results. We have shown in Ref. [7] that
if the constraint eguations for QED were so treated they would
in fact yicld the correct two-body spectrum through order ma®.
In particular we computed energies for the n = |, 2, 3 levels
of fermion—antifermion systems in QED that agree with those
of the perturbative treatment of these equations through order
me’, We treated the general unequal mass system and included
only the effective potentials that arise from the single exchange
diagram. We did not incorporate the influence of the virtual
annthilation diagram when specializing to equal masses. This
affirmative result established the constraint equations as legiti-
mate relativistic (wo-body equations.

The above discussion is meant 1o give the physics motivation
for the presentation that we shall give in this paper of the numeri-
cal technigue that we developed for showing that our constraint
equations yield the correct two-body spectrum for QED through
order ma'. This numerical technique is based on the inverse
power method, extending it 1o the coupled Schrédinger-like
equations which we obtained from the two-body Dirac equations
of constraint dynamics. We found that a crucial ingredient in the
application of this method was the Padé approximant. Why were
such techniques (the inverse power imethod together with Padé
approximants} necessary for our problem?

In order to obtain agreement with the perturbative results
through order me* our numerical results should differ from
the actual perturbative results by an amount on the order of
me® ~ uHY* (terms of order me® will not be present if
loop diagrams are not included in the potential). Variational
techniques using unperturbed wave functions are not adequate
since the effective potentials have two importanl scales, one
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on the order of angstroms (corresponding to the Coulomb part
of the potential) and one on the order of fermis (corresponding
to the relativistic corrections 10 the potential). The unperturbed
wave functions only display the gross scale of angstroms. This
would be adequate for a perturbative treatment of the equation
in which the relativistic corrections to the potentials ave approxi-
mated by their singular (more atractive than —1/4r%) forms,
but it is not for a numerical solution of the nonsingular unap-
proximated potentials (5, 7]. In order to obtain the desired
accuracy without the use of an unwarranted number of mesh
points we find that we must employ Padé acceleration tech-
niques [8] and logarithmic scaling. The presence of spin leads
to four coupled Schrédinger-like equarions. In recent work [7]
we have derived these equations and presented the perturbative
treatinent of them and the numeri¢al results. a subset of which
we present in more detailed form in this paper for the purpose
of NMustrating our algorithm.

In this paper we discuss in detail how we applied the inverse
power method to handle coupled Schrodinger-like equations.
The inversion technique that we use in carrying out this method
for the large banded and blocked matrices has not been pre-
sented in the literature as far as we can tell. Thus, for the
reader who works with eigenvalue problems invelving coupled
second-order differential equations similar to the time-indepen-
dent Schrdinger equation, the techniques that we present in
this paper can be readily adapted to solve the central difference
approximations to those equations,

In Section 11 we present a general discussion of the two-body
Dirac equations of constraint dynamics and give the detailed
Schridinger-like form of the equations. In Section I1T we review
the inverse power method and in Section IV we apply this
method to two-body Klein—Gordon equations of constraing dy-
namics—single, uncoupled, Schrodinger-like equations. With
the atd of numerical examples we uncover in this section special
problems associated with the short distance behavior of the
eftective potentials (quasipotentials) and describe how we used
Padé approximants and logarithmic scaling of the independent
variable to greatly accelerate the convergence of the multiple
mesh size, finite difference scheme {8}. In Section V, we solve
the crucial problem of inversion of the banded matrices associ-
ated with the discretized versions of the coupled Schrédinger-
like equations. We describe in detail with numerical examples
how Padé approximants, together with the inverte power
method and logarithmic scaling enabled us to obtain numerical
agreement using our coupled equations with the standard per-
turbative resulis of QED.

I1. THE TWO-BODY DIRAC EQUATIONS OF
CONSTRAINT DYNAMICS

Since these equations may be unfamiliar to most readers
we present below a brief background on the two-body Dirac
equations of constraint dynamics. For an extensive review, we
refer the reader to Refs. [5, 7] and work cited therein.

S81/115/2-16
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The 1960s and early 1970s saw the development of more
efficient formulations of the quantum relativistic two-body
bound state problem than the Bethe—Salpeter equation through
varions three-dimensional quasipotential reductions of this
same equation [9]. At the same time, however, a manifestly
covariant and canonical treatment of the classical relativistic
two-body problem without a mediating field seemed to be ruled
out by the ‘‘no-interaction theorem’ of Curie, Jordan, and
Sudarshan [10]. A resolution of this problem came with *‘rela-
tivistic constraint mechanics,” emerging from studies of Dir-
ac’s treatment of constrained Hamiltonian systems [4]. [t elimi-
nated covariantly the troublesome variables of relative time
and relative energy and reduced covariantly the number of
degrees of freedom o that of the nonrelativistic problem with
three-dimensional coordinates and momenta [4-5]. The con-
straint approach accomplishes this by introducing a generalized
mass shell constraint for each of the two particles of the form
p?+mi + @ = 0. Mathematical consistency required that
these two constraint be “‘compatible.”” The quantum mechani-
cal version of the “‘compatibility condition’” is that the quantum
versions of the constraints {two separate Klein—Gordon equa-
tions on the same wave function for spinless particles) commute
with each other. The form of these two equations for the two-
body relativistic bound state problem for fermions in QED is
that of two Dirac equations.

For two relativistic spin-one-half particles interacting
through a four-vector potential, the two compatible, 16-compo-
nent Dirac equations [5~7) are

L=y (pr = A) +m)g =0,
Lot = vy, (P2 — A + )i = 0.

The relativistic four-vector potentials A# are two-body ana-
logues of, and in the limit m; — o (or m, — ) go over to,
ordinary external vector potentials which may oeccur in the one-
body Dirac equation. The Lorentz character of these interactions
is apparent from the “*minimal substitution’” form of the equa-
tions. The general form of the covariant spin-dependent terms
in the constituent vector potentials are nonperturbative conse-
quences of the constraint approach, in particular of the compati-
bility condition

(1.1a)
{1.1b)

(1. %1y = 0. (1.2)

These wave operatots in the above equations operate on a
single 16-component spinor. We write the 16-component Dirac
Spinor as

“
i

(1.3)

where 4 are four component spinors.
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Equations (1.1a)~(1.1b) have several properties [5, 7] that
we list without proof:

(1) They are manifestly covariant.

(2) They reduce to the ordinary one-body Dirac equation
in the limit when one of the particles becomes infinitely heavy.

(3) They can be combined to give [5, 7} coupled Schrid-
inger-like equations for the [6 component Dirac spinors. In the
center of momentum (c.m.) system these equations resemble
ordinary Schrédinger-like equations with interactions including
central potential, Darwin terms, spin—orbit, spin—spin, and ten-
sor terms with additional coupling between the upper—upper
() and lower—lower (4f,) four component spinor portions of
the full 16-compenent Dirac spinor. The interactions are local
and dependent on the total energy w in the c.m. frame. Other
important properties are listed in Refs. [5, 7].

The general c.m. form of the coupled Schradinger-like equa-
tions is

(=V3+ Oi(r, a1, &, wil + Bofr, o, oy, Wil = B(w)ids
(1.4a)

(=V'+ Oulr, o, o0, whipy, + Buir, oy, o, with = B(witls,.
{1.4b)

There are similar equations invelving f» and ¢4 but one can
use Eqgs. (1.1a)-(1.1b) to determine t» and % in terms of iy
and . However, solving for ¢, and 4 is not necessary for
our purposes; selving the coupled eigenvalue equations Eqs.
{1.4a)-(1.4b) numerically is sufficient. The invariant

Fw) = gl — ml = (w* — 2wli(mi + md) + (m7 — m3)")4w?

(1.5)

plays the role of the energy eigenvalue in this equation. It is
the c.m. value squared of the relative momentumn and is a
function of the invariant total c.m. energy

w? = —(p, + p). (1.6
The additional kinematical variables of importance in the above
equation are

m, = m,m;/w (17)

and
= (w’ — m} — mi/ 2w, (1.8)
the relativistic reduced mass and energy of the fictitious particle

of relative motion introduced by Todorov {9, 5]. (Note that in
the limit when one of the particles becomes very heavy, these
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variables reduce o the mass and energy of the lighter particle.
Also note that in this limit, the above Schrddinger-like equations
are the same as those obtained by eliminating either the lower
or upper component of the one-body Dirac equation in terms
of the other.)

With these preliminaries out of the way we proceed directly
to the set of coupled equations that relate to the main purpose
of this paper. We obtain those by a further reduction of Egs.
{1.4a)—(1.4b) into coupled radial equations {7, 11]. The quan-
tum numbers mentioned below refer to the largest component
of the 16-component wave function, namely the upper—upper
part 4. The general wave function is of the form

¥ = !z Cits Rt im (1.9

where Ry; = u;,/v is the associated radial wave function. For
singlet states (j = {, § = 0) (1.4a) becomes {7, 11] (In'( ) =
(didr) In{ )

a’ j(J-i- 1) d 3.,
+ Ty NS
{ P pE 2.4 — &‘1+ln()(1)()d 28@
In’ o
-U@ Y+ ]n (XmX’)(g’ _n_(i{,L_)} b jo;
In’ (! x2 1, ,
~ R D+ {2 Iy’ ()6
3 2 1 e b
+5(% ¥ —56*‘9 Uayg; = B Wty e;. (1.10a)

This is coupled to the equation for the lower—lower compo-
nent iy,

{ o +J(j:- D42 o — st 4 10 (X,X,)j —%aﬂg
+ = (“9 Y+ —lﬂ (X, x)4" — M?'—}Q} Hejog
- DO\ T Ty + { s RS
= (‘@ ¥ - B Cﬁ} Uiy = DAy, (1.10b)

For unequal masses and non-s states, these two coupled equa-
tions are coupled further to the j = /. s = | components

My, Myt

J(J+ 3

{ dr' r?

+2e,.4 — s* —Hn(,\/.)(z)
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1, 1., 1., , In'lax)
LG 4~ (G 4o . — ——al A
5879 2(%%) 5 (xix2)%6 .

+M} HUI"‘_M (](i-l— ])ulj(ll

r

! N3 1 32
+ {[’iln’(xaxz)‘- —5(‘@ Y

I @ i
+2du€] r}u_“,j bL(W)H]I'U (llla)
N, . d
{ dr —_— r +., &£, ﬁ -9/1 +ln (X|X1)d
— = 9% I x)
8 5+ - (5@) + = In Onox ) .

11—'—1 +C§’ l’_'-/_‘)
+ ML)__} gt — _QM;_X) U+ Diaggey

;
s sy
E“(Xl)(z)v 2( )

(') Q%:l 4 }Ml;uﬁ b(w)uﬁ,,d, (1.11b)

Next we write the coupled equation for the two triplet states
J = I x 1. For the triplet equations (s = 1, = j — 1)
{1.4a)—(1.4b} become [7]

_d L iu=D . -2 ’ 4
{ a’r:+ > + 2. —~HA+1n (,\q,\@)dr

—-—(——jz—cg——ﬁ _(cg Y+ In'(xyix2)%9"  In'(x x)
225+ 1) 22/ + 1) p
L +GH2j

--1 n{y x2) - (2] )}Mu—l j

*{%;rr[—(@-:)+mLMM@]}mWU
BRLNG (' L MR P . A

+{ 22+ 1) 2(g)+2(2j+1)

(J‘l)(q IvVigg+ 1y g
(21 Y }114,. 1y {_21._+_] In'(yi )%

(1.12a)

" (g’ 2
+ ((Q - T):]} Hyjpy; = b'(W)“u—uj

and
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{*i +m—zﬁ + 26,5 — A + ln’()‘nfz)‘é
; dr

P
-G +:§’/(21' * n}uﬁ_w
+ {———w [~ (cg" - %—) + ln'()—(‘yﬁ)fg'ﬂ Uagery
+ (5’}11]))% }u ot {_—\/ZT [—ln’@,;‘ﬁ)‘g'

i (tg" - cgr_)]} tjery = B(W g1y (1.12b)

These couple to the triplet equations (s = L, 1=/ + )

4 LUTNGRD g e &
— = dr

G L gm I 0aed’ IO
22j+ 10 2 22/ + D r
PPN (055 —:9'1(21 + 1)} oy
{+ mz({z); f)ﬁ RO TEe
+ (%M%)]}uﬁ_.ﬁb?(w)ul,-w (1.12¢)

and

d G+ D+2) 5 —_.d
~ M A T e — A I () —
{ e = 2e, A —#+n (XIX')dr

a4

Tzt ( -

1 o= r
mfﬂ O xa)%

Hyjryg

WG (g N + 610  + 1)}
r [
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ViG+ 1D %’ )G
AL (e 2) v

Wxx)9 1 . 9%
+{+ 22j+ 1) Z(C%) 202+ 1}
(J+2)C5 VI
(2}+ i)y r }MUHU—F{ Zi+ 1 I’ G y2)

(1.12d)

@l
+ (c-@” - T)]} Wiy = bz(w)u{ié-ﬂj-

For the *P; equations we have simply

{d~2
d

I f?__l t [
‘!'2((3) zlﬂ (xix2)9

)~ %aﬂg

In"(x1x2)
’

In"(xix) ~ 97

r

1 Co
+2 }Hmo"*{aln’()(l)(z)(g ‘5((@ )

4‘;‘33(@4' 2(%‘} Ugio :bz(W)“mo (1.13a)
coupled to

dz

— o3 + 5t 26,4 — A+ In’ ()_(,7(2)—+ 62(@

U b o I (XD
+ —_ . — . — ——
2(‘9 ) 2ln Onix2)4 ;

tn'(/?il’}—(g' 1 ry— — + i A
+2_‘__I‘/\*;____‘ g + ‘z'ln ()(l)(z)Cg —5((3}
1., @4’ 5
+§6“C§+2“r_ H1||n=b(W)Ll41m. (113b)
For lowest order QED, &l = —a/r for fermion—antifermion

systems. The other (invariant) functions appearing in our
Schrédinger-like equation are

E, +m,
X =——G—, {1.14a)
E, +m,
X == (1.14b)
. Ei-m
%= (1.14c)
a=l ;'"3, (1.14d)
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E({sd) = Gile, — &, (1.15a)
EAdA) = Gle, ~ ), (1.15b)
, 1
G (1 = 24twy (1.16)
4 =In G, (1.17)
d% d*4  2d9

g =—: § + ===, .

¥ dr’ 6= drr v dr (1.18)

For the *Fy case (Egs. (1.13a)—(1.13b}) and the equal mass
{or{ = 0} = [ case (Egs. (1.10a)—(1.10b) or (1.11a)—(1.11b)
we have just two coupled Schrodinger-like equations. They
have the general form

(— % +f(r) — + q(r)) u(r) + g(Nu(ry = bu(r) (1.19a)

(# Ad—, + e(r) i + s(r)) v{r) + a(Hulr) = bwir). (1.19b)
dar dr

For all other cases (that is, for the unequal mass j = [ # 0 and
0 +# j =1 *1 cases) we have four coupled equations of the form

(-&

) u(r) + g(rulr) + c(ryin

+ plriz(ry = b'ulr) (1.20a)
(f ) v(r)y + alrul(r) + h(r)y(r)
+ B(r)z(r) = bv(r) (1.20b)
d? d
(— — telr)—+ (r(r)) yr) + k(rulry + Hnver)
dr- dar
+ j{r)z(ry = b7¥(r) (1.20c)
d? d
(# s T elr) -+ z{r)) ey + m{rulry + nlrw(r)
dr dr
+ o(r)y(r) = b'z(r). (1.20d)

In this paper we show how we adapt the inverse power
method for the solution of the eigenvalue problem for coupled
equations of the form of Eqgs. (1.19) and (1.20).

I1L. REVIEW OF THE INVERSE POWER METHOD FOR
COMPUTING EXGENVALUES

We use this short review section to establish notation and
to point out some unique aspects of our equations that require
some adaptation of the standard procedure used in the imple-
menting the inverse power method.

With the eigenvalue equation
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Hluwy = A, 2.1
the first step in the inverse power method [12] for determining
the eigenvalue and eigenvectors of this equation tequires an
estimate of |u) and A. Suppose that we are estimating A®, the
ground state eigenvalue. Let |iy) be our estimate of |u) and let
Agbe our estimate of A", Let |2" be the ground state eigenvecior.
The inverse-power method leads to an improved estimate of
A? and its eigenvector k%) and the crucial step in this procedure
is the construction of the vector
lie1) = (H = Ao)'lie). (22)

Numerically this requires the inversion of a (generally very
large) banded matrix. We give the standard inversion technigue
[12] for tridiagonal matrices appearing in Schrodinger-like
equations in Section IV, We present the generalization of this
technique necessary for coupled Schrodinger-like equations in
Section V.

Given |u,), one then computes {1} and then using a com-
plete set of states shows that the eigenvalue would be cor-
rected to

Ag— Ay ~ AL (2.3)

1
{tiolee)

The beauty of the inverse power method is that it provides a
way of turning the original vector |i,) into the direction of |4
by an iterative procedure.

This begins with the normalization of |u,} to [4,). Note that
it is more important that our initial eigenvalue estimate be good
than that our eigenvector guess be good. One can ascertain that
our eigenvalue estimate A, is closer to A" than it is to any of
the other A, { = 1, 2, ..., by counting nodes of &,(x)). If this
is so, then the new estimate of the eigenvector, Jid,), is closer
to |#% than is |dg).

Each time we repeat this, the eigenvector found becomes
closer to the correct result. One constructs

leez) = (H — /\u)_llﬁ|> {2.16)
and one finds that (i u,) is closer to (A" — Ag)™' than {d|w,)
is. Numerically, we repeat this procedure until (i7;|i,.,) differs
from (Li,-_||£l|) by an amount less than some prescribed value.
Once that has occurred we can correct Ay to Ay + 1/, |u;,).
Note that we can help this process along by replacing A, by
nAg + (1 — m/{d;|us), where 0 < n < 1. This may be
somewhat risky since in our case the operator H (see Egs.
{1.10)=(1.13)) depends on the eigenvalue, H = H(A). Note that
becavse of the nonlinearity of the eigenvalue problem, we have
three overlapping avenues of approach. One can fix A, in both
spots in the inverse operator (H(hyy — Ay)~' while the iteration
proceeds or adjust it in the —A, spot or in H(A,) or in both,

475

while the iterations are proceeding. In the next section we
continue the review of the inverse power method with an appli-
cation to an ordinary uncoupled Schrédinger-like equation.

Iv. TWO BOUND SPINLESS PARTICLES AND THE
INVERSE POWER METHOD FOR EIGENVALUES OF AN
UNCOUPLED SCHRODINGER-LIKE EQUATION

What makes the inverse power method such a powerful tool
for Schrédinger-like equations is that one can numerically invert
(H — Ap) in the equation

(H - Ao)h‘l) = |f30> 3.1

relatively simply {12]. In the case where we have an uncoupled
Schodinger-like equation of the form

(3.2)

r

(- L+ 401w = autr

H will be tridiagonal if we use the simplest matrix form for
—d*/dr’. Tn that case, Eq. (3.1} has the form
Dv=u (3.3)

in which the tridiagonal matrix D represents the operator # —
Ao, the column vector v represents the unknown vector |u,),
and u represents the known vector |iZ,). Let the vector d be the
diagonal portion of D and let f and e be the right and left off-

diagonal portions of D. In component form Eq. (3.3) is, for
(=2, M—1,

d|U| +f|UQ = Uy (34a)
el T du Tt fvia =, {3.4b)
EyUy1 T dyliy = ty. (3.4c)

We repeat the standard inversion procedure of (3.4) as an intro-
duction for the important generalizations given in Section I'V.

First, we manipulate (3.4} to give v;, i = 1, .., M — 1, in
terms of v and the known vectoru. Let d, = d,, %, = #,. Then

v, = Eil(a. ~ A, (3.5)

Use the next equation to give v; in terms of v,

e fi €y _
eu; +dhw, + frus = dz"_z__ U2+C_1_ui + fauy = uy,
I I

s0 that
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Ug - Z(E2 - 1U3), (3.6)
where
L eh el
dg —dg 31 ) Uy C—fi . (37)

Continuing in this way we obtain from (3.4a)—(3.4b)

Ustj(a.‘*ff—lvm)a i=1,..M—1, (3.8)
where
=5 _ ei‘ﬁ*]
d;=d, i, (3.9
- €l 1.10)
i = U; El_l ( .

We now combine the i = M — 1 term of (3.8) with (3.4¢) 10
solve for vy, in terms of @), (and thus for the whole vector u).
We have

1

Uy ZE_(EM—I = fu=1Uu). 3.11)
M,
Substitute this into (3.4c¢) and we find
7
Uy = Ei’ (3.12)
where, as with (3.9)—(3.10),
= dy - 2o (3.13)
ey
and
€yl
Ty = iy — =1 (3.14)
dy-

Starting with (3.12) and the known vector u, we can use
(3.8) to generate the rest of the components of the vector v,
For later comparison we note that the crucial scalar product
(our vectors are real)

N
(i) = [ ey (ry dr = wv = 3w,

Before considering the more complicated examples of the

H. W. CRATER

coupled Schridinger-like equations (1.19a)~(1.19b) and
(1.202)—(1.20d), we examine a simpler two-body equation, one
for two spinless particles. In Ref. [13] we have shown that the
two simultaneous Klein—-Gordon equations for the two spinless
particles in the constraint approach can be reduced to a single
uncoupled Schrodinger-like equation. For mutual electromag-
netic interactions it takes the form

[pz__%_z__v_'_q...p] b=t (3.15)

(Note that in the limit in which one of the particles becomes
very heavy, this equation reduces to the ordinary Klein—Gordon
equation for a spinless particle in an external Coulomb poten-
tial.) In the coordinate representation the substitution y{r) =
u(rYY,/r leads to the radial form

42 i+ 1 280 o o
[ dr? r r rr o Firw + 2a)
3.16)
o d s
rirw + 200 a'r] U= by

In that same work we showed that the ground state perturbative
spectrum for the total c.m. energy w for equal masses is

2 4
W:m[zwa__wa]

(3.17)

through order a*. We shall use this example to establish and
further review certain aspects of the inverse power method as
well as to detail some of the special techniques we used 1o
obtain a comparable accuracy numerically for & ~ 7. In this
test calculation we take both masses to be that of the electron.
We use the central difference method for approximating the
eigenvalues and the endpoint of the calculation is taken to be
20 A. The iterations using the inverse power method are contin-
ved until the difference in successively computed eigenvalues
is less than some small fraction of pa® (u is the reduced mass
mi2), much less than the accuracy we expect for our equations.
Numerical errors are thus small compared to theoretical errors.
All of the calculations were done on an AT(286) personal com-
puter.

The nonrelativistic ground state energy level for our actual
example Hamiltonian given in Eq. (3.17) is —ma’/4. Although
we are not interested in comparison of our calculated spectral
results with experiment, we shall use the actal values of the
fine structure constant along with the electron’s mass. This will
provide a realistic test of our numerical scheme. In that case,
the above nonrelativistic ground state energy level is numeri-
cally equal to —6.8028501603 eV. It is modified to m|[—a*/
4 — 13a*/64] or —6.8031444973 eV by the semirelativistic
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correction. For comparison me® = 0.0007245221 eV, ma® =
0.0000052871 eV, and ma® = 0.00060000386 ¢V, (This is the
reason why we are including so many significant figures in our
theoretical-numerical test [14].) The first numerical calculation
that we performed used equal mesh sizes of approximately
0.08, 0.04, and 0.02 A corresponding to 256, 512, and 1024
grid points with the end-point truncated to about ry = 20 A.
The respective eigenvalues found are —6.7934553887,
—6.8014683095, and —6.8036671772 eV. As a measure of the
difference between our nonperturbative numerical calcutation
and the perturbative analytic calculation of the binding energy
we define the fractional difference as (W, — W)/ . The
fractional differences (FD) corresponding to the above three
values are 13.3731037, 2.3135083, and —0.7214134. Although
adequate for comparison with the nonrelativistic resuits (for
which (Woaet = Whngen)/(—mae’/4) yields the three values of
~.0013810, —.0002031, .0001201), they are clearly not ade-
guate for the semirelativistic results. To be truly useful the
error should be on the order of ma® (corresponding to FD ~
o ~ 0.00005), since without radiative corrections this would
be the next order semirelativistic correction. A fixed point Padé
extrapolation procedure [8] of the eigenvalue A = b*(w) based
on the above three points using

A + Bh?
1 + Ch*’

Alh) = (3.18)

where & is the mesh size, vields

5A|)l_: - 4A2A3 - I\yi\.g

A = L T A

Using this and Eq. (1.5) we obtain

w{) — 2m, = —6.8041392832 ¢V (3.19)

or FD = —1.3730236, which is clearly an inadequate approxi-
mation to the correct result. The size of the difference between
it and the perturbative result is 1,37 times the fine structure
scale of wa’. This becomes plausible in light of the fact that
the smaliest mesh size is of the order 10° times the classical
electron radius, a distance at which the denominator part of the
derivative term in the interaction has a significant variation and
also a1 which the —a?/r* becomes as imporiam as the Coulomb
term —2g,o/r. In fact, in this case the extrapolated value is
less accurate than the value with the smallest grid size.

As a comparison we consider Eq. (3.16) without the deriva-
tive term,

b4
[pz _ e “—2] v = b (3.20)
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In that case the ground state binding energy can be solved
exactly [6, 7], yielding

wzmm\/l +a¥in+ VI TP —at -1 —-3)

ma? mo’ 11 me’
=2m—"m s m——+ - —— + ). (321
MR a6 T O G2l
For the ground state this gives
a 2la?

— 2= — -
W i m[ 4 64

] + Ole™).  (3.21b)
Numerically this is —6.8033256279 eV. The respective eigen-
values found using 236, 512, and 1024 grid points are
—6.7929216290, —6.80070457790, and —6.8026629524 eV
corresponding to FD values of 14.3598098, 3.6176262, and
0.9146381. The simple three-point Padé extrapolated eigen-
value A{()) yields the extrapolated binding energy of w() —
2m, = —6.8033168749 ¢V or FD = 0.01208!1. This is clearly
a much better approximation to the perturbative result, since
the size of the difference is just 0.012 times the fine structure
scale of wa®. Note that in this case the extrapolated result is
significantly better than the value calculated at the smallest grid
size. However, the accuracy with this number of grid points
still leaves something to be desired as it is a factor of about
200 times the pa® error scale we demand,

This extrapolation procedure works extraordinarily well for
a purely Coulombic potential (without the additional —a?*/#?
fine structure-producing potential). With just

, 2e.c ,
[p‘ - ] W= by,

(3.22)

Fr

the exact Coulombic bound state solution for the ground state is

w=V2nVI1+1/vVIE+al

(3.23)

Perturbatively this corresponds to

2 4
w~2m:m{—af+“a

b

) o ] + O{a®).
Numerically this is —6.802601 1058 eV. The exact solution 18
—6.8026011162 eV. The respective eigenvalues found using
256, 512, and 1024 grid points are —6.7922535171,
-—6.8000083061, and —6.8019525430 eV, corresponding to FD
values of 14.2819513, 3.5786346, and 0.8951589. The Padé
extrapolated eigenvalue A{0) yields the extrapolated binding
energy of w{()) — 2m, = —6.8026011158 eV or FD =
—(.0000138. This is an extremely accurate representation of
the perturbative value and it is even a better representation of



478

the exact resull, the size of the difference being 0.0000005
times the fine structure scale of wa?. Note that in this case the
extrapolated result attests quite strongly to the value of this
extrapolation procedure [8), as the difference calculated at the
smallest grid size is of the order of 1.0 times the fine structure
scale of pa’.

However, we are still left with relatively poor extrapolation
results for Eq. (3.16) and to a lesser extent for Eq. (3.20). The
problem is one of scale. For the purely Coulomb example of
Eq. (3.22) there is only one scale that is of importance and that
is the atomic scale of angstroms. For the cases of Eqs. (3.20),
{3.22) an additional scale occurs around a few fermis, as it is
at this distance that the non-Coulombic terms become about as
important as the Coulomb term. Because of the importance of
both scales we make a variable change to

x = In{r/rg), (3.25)
where ry is proportional to the Compton wave length. We
further make a change of the dependent variable

i = e'u, (3.26)
so that the Hermitian part of the operator will remain Hermitian.

In that case Eq. (3.16) for S-states has the form (we have
dropped the tilde on )

i d (2 ANd ¥ 3 ;
- = +|l=+-)——=4+g—— = h?
( L ded (rz r) dx  2r q 4?’1) u(x) = bulx),

(3.27)

where g = —2g,/r — &/ with r = ryet and f = —a¥/(r(rw
+ 2a)). In applying the inverse power method to Eq. (3.27)
note that the crucial scalar product (we have dropped the tilde
on figx) and u,(x))

N

(Iiu‘u1> = ffm ﬁo(x)u,(x) dx =n'v= Z u;l;.

We use the same set of numbers (256,512,1024) of grid poinis
as with the equally spaced case but now we solve the above
eigenvalue equation with equally spaced points in x space in-
stead of r space. The range in x space is In(r¢/ry) < x = In{ry/
ro), where, as before, ry is about a Compten wave length and
ry 18 about 20 Alnr space this corresponds to ry(rp/ry) = r
= ry. The step sizes vary from about 2ry(ro/r)in(ry/ro)/M to
rodn(ry/r)/M for M = 256, 512, and 1024. The perturbative
value m[—a?/4 — 13a%/64] of the energy we are trying to
reproduce is numerically —6.8031444973 eV. At these three
number of mesh points the inverse power method yields
—6.7901974734, —6.7999193135, and —6.8023396923 eV,
corresponding to FD values of 17.8697443, 4.4514639, and
1.1108081. From these values we obtain the fixed-point Padé

H. W. CRATER

value for the extrapolated binding energy of w(0) — 2m, =
—6.8031444728 eV. This is in excellent agreement with the
perturbative value with the difference being 0.0000338 times
the fine structure scale of e that is consistent with the demand
of errors on the order of pua®. Note that the extrapolated value
is significantly better than the best unextrapolated value, as is
most clearly shown by the remarkable drop in the FD value.
In fact the latter is not of an acceptable accuracy, its difference
being on the order of the fine structure scale itself. Which non-
Coulombic term is the most troublesome in this regard? Without
the derivative terms the perturbative value of the energy we
are trying to reproduce is m[—a’4 — 2la/64] or
—6.8033256279 eV. Al the three number of mesh points the
inverse power method yields w — 2m, = —6.7903427169,
—6.8000913547, and —6.8025185935 eV with corresponding
FD values of 17.9192764, 4.5774839, and 1.1138852. From
these values we obtain the fixed-point Padé value for the extrap-
olated binding energy of w(0) — 2m,. = —6.8033256715 eV.
Again this is in excellent agreement with the perturbative value
we are trying to reproduce with the difference being
—0.0000602 times the fine structure scale of ue’. Again the
extrapolated value is significantly better than the best unextrap-
olated value, with the latter not being of an acceptable accuracy,
its difference once again being on the order of the fine structure
scale itself.

If we choose 1o drop the —#? = —a?/r® term, instead of
the derivative term, then the perturbative value of the energy
we are trying to reproduce is m[—o?/4 + 9a*/64] or
—6.8024199753 eV. At the three number of mesh points
the inverse power method yields = —6.7894788647,
—6.7991964040, and —6.8016157089 eV, corresponding to
FD = 17.8615827, 44492383, and 1.1100648. From these
values we obtain the fixed-point Padé value for the extrapolated
binding energy of w(0) — Zm, = —6.8024201320 eV. This is
in excellent agreement with the perturbative value we are trying
to reproduce with the difference being —0.0002163 times the
fine structure scale of we®. Again the extrapolated value is
significantly better than the best unextrapolated value, with the
latter not being of an acceptable accuracy, its difference once
again being on the order of the fine structure scale itself. What
we learn from this and the analysis of the previous paragraph
is that both relativistic perturbations are equally difficult to
reproduce numerically without the fixed-point Padé extrapola-
tion scheme, even with the logarithmic scaling of the indepen-
dent variable in the eigenvalue equation. This is clearly demon-
strated by the steep drop in the FD value from about 18 to
nearly o

V. TWO BOUND SPIN-ONE-HALF PARTICLES AND THE
INVERSE POWER METHOD FOR EIGENVALUES OF
COUPLED SCHRODINGER-LIKE EQUATIONS

The general discussion on the inverse power method given
in Section TII applies here as well. The difficult task is the
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inversion of H — A, We first seek a method for this inversion
when H{u) = Alu) is represented by the coupled radial Schréd-
inger-like equations (see Egs. (1.19a)—(1.19b}) of the form ({u)
is represented by the functions u(r) and v(#))

(fi% * f(”;?; * q(r)) u(r) + glrwin) = Au(r),  (4.la)

A2
(—c—{— + e(r)i + s(r)) v(r) + h(ru(rn) = Av(r), (4.1b)
dr* dr

In the finite difference approach the system (4.12)-(4.1b) cor-
responds to a matrix in block form. The two diagonal blocks
are banded tridiagonal matrices while the off-diagonal blocks
are diagonal matrices. kn matrix form the equations correspond-
ing Eq. (3.1} are

Dv + Gx = u, (4.2a)

w; (4.2b)

fl

Hyv + Sx

v and x represent the unknown vector Iu.} (or u,(r), v,(r)) of
Eq. (3.1) and u and w represent the known vector |&,) (or &(r),
Belr)). D and S are the tridingonal matrices representing the
coefficients of u(r) and v(r), respectively, in Egs. (4.1a)-(4.1b)
while G and H are diagonal matrices representing the functions
g{r) and A(r). The three bands that make up D are represented
by the vector d along the diagonal, and e and f are the right
and left off-diagonai portions. The corresponding three bands
that make up S are 7, s, and . The elements of the diagonal
matrix G and H are represented by the vectors g and h. In
component form we have

du, + T, +tgx,=u,=u, (4.3a)
huoyvsx 4 =w=w (4.3b)
and for i = 2, .., M — 1,
ety + du + fo + g = (4.3c)
o oo st L = wy (4.3d)
and, finally,
ewly— + dytin + guxu = tn {4.3e)
AUy + My T Syl = Wy (4.31)
We rewrite Egs. (4.3a)-(4.3b) as
dv, +5x =W~ fivs (4.4a)
Elu‘ + Elxl, = Wl - {lxh (44b)

where

a\ =d, g§=g. H=s, E\ = h,.
Solve (4.4a)-(4.4b) for v, and x,,
v = {1 __flvz) 4 (w _wéﬁxz)!
d, n
X = (w, _~ {ix) + (i, _mquz)!
8 g

where

5= (3131 - Elzr)/f—il
ho=(z.h —d5)z.

For i = 2, the next two equations (4.3¢)—(4.3d) are

e + dyy + iUy T g = w

B0y + Xyt 820+ Lx = wn
In analogy with (4.4a)—(4.4b) they can be written as

EzUz + gy = Uy — foby

s + 5y = Wy — X3,

where
= e fi - e
d=d, — = =gy — —
2 2 F) 1 =& 3
Eg =k, Tj'ifl 5 ’?ifl
£ 55
— elit-l eﬁv_l
Uy = Wy — —=— =
d, A,
Wv:Wzﬁn’.,Wl‘_Ei%E
5 &
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(4.5)

(4.6a)

(4.6b)

(4.7a)
(4.7h)
(4.7¢c)
(4.7d)

(4.8a)
{4.8b)

(4.10a)
(4.10b)

(4.11a)

(4.11b)

(4.11¢)

(4.11d)

Solving (4.10a)—(4.10b) in analogy to {(4.4a)—(4.4b) yields

(i _~f203) r (W — oxs)

dz l’tg

Uy =

(w2 — &xa) + (1 — frv3)

Xy =

73
o
s

where

(4.12a)

(4.12b)

{4.13a})
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& = (Bahy — d:5)hy (4.13b)
5 = (@ — Eh)fds (4130)
/;2 = (Ezﬁz e 5'233)/?3. (4.13d)

‘This process is repeated so that in general we have for i = 2,
3, ..M 1,

_ (4 _.IEUHI) + {iv; *__fixh-l)

v, 4.14a
1 3 (4.14a)
X = (w; __é’l'xi+|) + (u; *{?Um), (4.14b)
& gi
where
B = gy — bt Wi (4.152)
diny fiiy
Wy = w, — 2im Thlhioy (4.15b)
S 8i-1
and
d, = (d3, ~ gh)I5, (4.16a)
g{- = (E,-E - E;E;)/E, (416b)
,S—:..- = (H,E‘; - E,E,)/E, (4'1 6(:)
I = (gl — ds)iz (4.16d)
with
- €,‘ﬁ‘| - eigx“l
d=d— 22 g =g — Bl 4.17a
di- g8 hi-i ( )
E; =h,—- nifi_", §=8 - niQ_IA (4.17b)
Eim Si-1

To repeat, the above equations are fori = 2,3, .., M — 1. We
combine the i = M — 1 equations for v, and xy-, in terms of
Uy and xy, with (4.3e)-(4.3f) to obtain

EM WM
Uy = — +

= - 4.18a

P ( )

g =g (4.18b)
Sy Bm

where By, By, and dy, gy, 5y, fu, are given by (4.13)—{4.17)
with i = M, Then (4.18) gives vy and xy; in terms of the entire
vectors u and w and we use (4.14) and (4.6) to backtrack to
the remaining components of vand x for i = M -~ 1, M —
2.2, L.

Our next task is to seek an inverse of H — A in which
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H|U) = A|u) is represented by four coupled radial Schrodinger-
like equations (see (i.20a)—(1.20d} of the forms (Ju) is repre-
sented by the functions u(r), v(#), y(r), and z(r))

(_ gﬁ ) ;ldi N ‘I(’)) u(r) + g(riv(r) + c(ry(r)

+ p(rz(ry = bu(r) {(4.192)

(_ :;:: +f(-")% + S(”)) v(r) + a(Hulry + h(ry(r

+ B(Nz(n = bu(r) (4.19b)

(' jr.” + e(r) d% + U(f)) y(r) + k(Hu(r) + [(Du(r)

+ j(nz{n) = Py (4.19¢)

(— %; + e(r)% + t(r)) z(r) + m(PAu(ry + n(rvir)

+ o(Ny(r) = bz(r). (4.19d)
In the finite difference approach the above system of equations
corresponds to a matrix in 4 X 4 block form. In matrix form
the equations corresponding to Egs. (3.1) are

Dv+Gx+Cz+Pa=u (4.20a)
Hv+8x+Qz+Ba=w (4.20b)
Kv+Ix+Rz+ Ja=y (4.20¢)
Mv+Nx+Ozr+Ia=t (4.20d)

The four diagonal blocks D, 8, R, T are banded tridiagonal
matrices while the 12 off-diagonal blocks G, C, P, H, Q, B,
K, L, J, M, N, O are diagonal matrices. The elements of these
12 diagonal matrices are represented by vectors with lower
case symbols comresponding to upper case diagonal matrices.
The tridiagonal matrices D and S are represented as before by
the respeciive set of vectors e, d, f, and v, s, {. The other
tridiagonal matrices R and I are represented by the set of vectors
¥, r, e and , 1, u, respectively. The vectors v, X, z, a represent
the unknown vector |u,} while the four vectars u, w, y, t repre-
sent the known vector |f). In component form the first row of
each row of blocks is

dvi+gxtontpa=u—fiva=u—fivy (421a)
hoy,+ s+ gz +bha=w —Lxn=w —Lx, (4.21b)

kv +tilx+rnztja =y —an=%—onz 42l
mu,Fnx o Fha =h—wa=h— wa (4.21d)

and fori = 2,3, ., M — | we have
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dv; X T oz T = o fils el (4.22a)
i, + s+ g+ bag = w o Gxin — g, (4.220)

kv, + L+ org o =y - oz — Yizie (4.22¢)
mu+ ng ot iy = 6~ o — v, (4.22d)

and

AUy + Euky + Culn + Pulty = Uy — eyly-,  (4.23a)
hyUu + Sud + quzy + Dyay = wy — Mgy (4.23b)

kyu + Dy + Fyzy + futly = Yu — YuZue (4.23c)
MUy + FlaXag + Oty + I'M(lM = FM = Pyl . (423d)

By solving the four equations (4.21a)~(4.21d) for v\, x,, z), &
and substituting into the i = 2 equaticns etc., we find that the
i=123, ... M — 1 equations can be written as

du; + gx + Tz + pai =, — fvin (4.24a)
R+ 5x, + gz + bai=w, — {x_, (4.24b)
kv + 1o ¥ Pz + g = ¥ = iz (4.24¢)
;ﬁ,‘U! -+ ﬁ;x,- + 6,‘2,- -+ E,-a,- = ;,' = il (424d)
where
d=d—efdd.. B=g— el/h, (425
&= er'ai*lfi(-i—fa Pi=pi— e I (4.25b)

o=u — 6’:‘(“:—”"};‘—1 + WE-I/}IE—] + ,V;'—I/E'—l + tiy /i )

(4.25¢)
};,' = h,' - e,‘j}-]/g{-ia E;' =5 71.'{.’.(1/5.'4 (4‘25d)
g =g; — 6’.‘0&:'4/?,"1 s Ei = b — mipi I, (4.25€)

We=w, — w8 +wi /5 + yiﬁ]j?i-i + 6/,

(4.25f)
k=k =y faléo, L=L~vllGg- (425g)
o=y o, ] = i~ v G, (4.25h)

= Y Gy T wi J Gy v T 180,
(4.251)
== Yifidfr, Bo=m— vlalbo, (4.25))
=0 — Vi ljmy, §=0— v/, (4.25Kk)

t= 1= vlu Py F widbioy + v+ L),
(4.251)

In order to define the tilde variables let

481
ai =d, g =g, < =« El =P (4-263)
h=h, si=s., §i=q, b =>b (4.26b)
E|=k|, ?l:!h r =1, j;=j| (426C)
my = M, ﬁl = Ny, 5[ 2, ?| = 1‘1 (426d)

and (foc i = 1, ..., M)
DSHG, = d5, — hg., RIOJ,=Fi—0j. (427a)
GKDL, = g"fh{ - ai_!i’ QIOB, = a.'}s - 5.—f, (4.27b)
DNMG, = di,— mg, QJRB =gji—rh, (427c)
HLKS, =l — ks, CIOP;=¢i,—o;p;, (427d)
SMHN, =3, — hii;,, CJRP, =Tij, — ¥p,,  (4.27¢)
NKML, =k —ml,, CBQP,=¢bh ~gp. (427

Thus defining

DET, = DSHG, X RIQJ; + GKDL, X QIOB; + DNMG,
X QUIRB, + HLKS; X CIOP; + SMHN; X CIRP;

+ NKML; X CBOP, (4.28)

fori = 1,2, .., M, we have
d: = DET/[5{RIOJ)) — I(QIOB,) + n{QJRB)], (4.29a)
h, = DET/[—Z{RIOJ) + L(CIOP)) — i{CIRP)],  (4.20b)
k, = DET,/[g{QIOB;) — 5(CIOP) + A{(CBQP)], (4.29¢)
iy = DET,{[—Z{QJRB,) + 5(CIRP) — [(CBQP)],  (4.29d)
¢, = DET/|—h(RIOJ)) + k(QIOB) —~ m{CIRP)),  (4.29%)
§ = DET/{d(RIOJ,) — k(CIOP,) — m;(CBQP)], (4.291)
I, = DET/1—d{QIOB)+ h(CIOP) — m{CBOP)), (4.29g)
fi; = DETJ[d{QJRB;) — h(CJRP,) + k{CBOP)],  (4.29h)
& = DET/IL(HLKS) + jAMSHN)) + B,(NKML)],  (4.251)
§, = DET/[I,(GKDL,) + jA{DNMG,) — B(NKML)],  (4.29))
.= DETIi(DSHG,)) — b{DNMG,) — p{SMHN))], (4.29%)
6; = DET/[—j{DSHG) — b{KGDL)) — p{HLKS)], (4.29])

7= DET,/{ -G(HLKS)) - F(SMHN,) — GANKML)}, (4.29m)
b, = DET,/[~5(GKDL,) — F{DNMG,) + ¢(NKML,)], (4.29n)
= DET./[—3{DSHG,) + G{DNMG,) + E(SMHN))1, (4.29)
i, = DET/|7(DSHG;) + §(GKDL) + ¢.(HLKS)).  (3.29p)

Finally we reach the last set of equations
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Ay + By + Cuzu + Pty = iy, (4.30a) = (&; = fom)Pe + (W = Lx b + (3, — ayzin M
PagUps + Sasky + Gugzm + bustte = Wy, (4.30b) +(F = eI, (4.33d)
ks + Dker + FuaZn F Jusllae = Vg (4.30c)
_ e _w " _“ i _M " _M fori = M — 1, ..., 2, 1. Thus the inversion is accomplished.
fiyty + fyky + Oy + iyay = by, {4.30d) Based on our experience with the spinless uncoupled Schrid-

where
dy=dy = eufui/d-r. = gy ~ ewlu-ithy-r,  (4312)
o = Co — euty-/ky—i, P = Pu ~ Eutthss—t/ My, (4.31b)
= oty — enltty-ildyo) + Wy + yusilkyo,
+ Iy [y ), (4.31c)
b = hy = enfu-ri§uars 5= Sy — Mulu—i/Fuoy,  (4.31d)
Gu = qu — euu-illumr, by = by = Muptar-i/ity-s,  (4.31e)
W = Wy — Mgttt Gumr + WarrfSumt + yauo it s
+ iy /A1), 4.315)
ki = ky = Vi SEu-ry Ta = la — Yarlai- il G, (4.31g)
To = T Yy Futs = Ju Y {0y, (431h)
v = Yur Vel /Sy F Wam I Gy F Yam i Py
+ [ Oy ), (4.311)
My = My = Vaefu-rd Pt Ty = Ny — Vylag_ by, (4.31))
By = On — Yeslsr—i v I = bt — Vorlts—tf iy, (4.31K)
2y =t — Varlty/Puoy + Wi /By + yM-I‘I_;:\J-I
+ fy /Ty ). (4.311)

The above equations can be solved for vy, Xy, zy, gy, leading
us to

Vi = Ayldy + Wal iy + Sl + Tulity,  (4.32a)
Xy = Upl For + Wadd Sy + Tl Ly + Tlfiyy,  (4.32b)
2o = Ul €y + Wl Gos + Vol Py + Tl Bres (4.320)
Qa = Wl Py + Wb + Fodl fog + Tl Tg {4.32d)

then we determine the rest of the components of the above
indicated vectors,

v = (B — fv)id + (W, — Lxa ) + (5, — azi Mk,

+ (1 = paai My, (4.33a)
xi= (= fua g + W, — x5 + (3 — aze M

+ (1 — g M, {4.33b)
7= (W — fon e+ W — Lxa Mg + (3 — auzenMF

+ (5 — pas M, (4.33c)

inger-like equation the actual form for the equations used in
our numerical work should be scaled by x = In(r/ry), where
ry is proportional to the Compton wave length. In that case our
general set of equations has the form

1a 2 _ fond _fo, _ 3
( rldx? +( )dx 2r 9(r) )u(x)
+ g(rvix) = bu(x) (4.34a)
LLE (2 e\ d e, 3
( rzabcz_i-(r2+ r)dx 2r+ str) )u(x)
+ a(Hulx) = bu{x) (4.34p)

for the case of two coupled equations and

_1a 2 finyd _flr) 3
( rzdx2+(r2+ r)d,r 2.r‘Jr q(r) ’)u(x)

+ glrie(x) + e(r)y(x) + plrz(x) =
( 1 d? (2 f(r)) d_fln
+
7 dy de  2r
+ a(ryulx) + h(r)y(x) + B(r)z(x) =
_1 & (2 enyd et _3
( rzd.t+(r2+ r)a’x 2F iry ) /()

Biy(x)  (4.350)

bou(x) {(4.35a)

+ s{r) — %) vix)

Pu(x) (4.35h)

+ k(ru(x) + [nv(x) + j(Nzx =

1 42 2 e(r) e{r) 3
(rd2+(+r)dx 2+() )Z(x)

+ m(ulx) + n(Hvix) + o(Ny(x) = b%z{x)  (4.35d)
for the case of four coupled equations. Also included in the
above equations is a scale change in the dependent variables.
The tildes (see Eq. (3.26)) are suppressed in the above functions.
For the case of only two coupled equations, the crucial scalar
product is

Gadu) = |7 dx Qoo () + Bl )
(4.36)

N
=wv+twx= E (w0 + wex;).
i=1

For the case of four coupled equations that scalar product is
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Gy = [ dx Gy () + 64000 () + 5y (0

+ 20z (x))

=u-v+w-xty z+t-a @3h

N
= 2 (i + wax; + yiz; + hag).
i=1

We describe the details of the two most important test cases
Jjust as we did in the examples in Section IV. In particular we
will discuss in detail here the 'S, and 3, states of positronium.
{(We are not, however, including the effects of the annihilation
diagram for the latter in the tests presented below.) As men-
tioned in the beginning of this paper, our equations have an
exact solution for singlet positronium. As shown elsewhere [6],
our singlet equation is identical in form to Eq. (3.15) for spinless
particles without the derivative term, that is, to0 Eq. (3.20). The
perturbative spectrum is given in Eq. (3.21a) and, as in the
discussion below that equation, our nonperturbative numerical
treatment yields that perturbative result with errors on the order
of pe® if Padé approximates are teamed with logarithmic scal-
ing. It was shown in Refs. [6, 7, 11] that Eq. (3.20) can be
derived from Egs. (1.4a)-(1.4b) with the aid of the additional
combinations of the first-order form of our equations for o =
—a/r. That ailows us to express the lower—lower portion of
the wave function in terms of the upper—upper portion. If we
choose not to perform that reduction then we obtain the two
coupled equations (1.10a)—-(1.10b), the appropriate radial coun-
terparts of Eqs. (1.4a)-(1.4b). Unfortunately, we have not been
able to perform this by taking one-half the number of coupled
equations for triplet (j ¥ /) positronium. We thus remain with
Egs. (1.122)(1.12d) in that case. (We can reduce the *P, equa-
tions Egs. (1.23a)—(1.23b) to a single equation and we can
reduce the four coupled equations {1.10a)-(1.11b) for the un-
equal mass, non-s-states to two coupled equations inveolving
only the upper—upper portions of the j = I singlet and triplet
equations.)

As a check on our equations in the singlet case and for more
confidence building for the more complicated case of four
coupled equations in the triplet case, we solve for the singlet
spectrum nonperturbatively by solving the coupled equations
(1.10a)—(1.10b}. As a preliminary step in this calculation and
to show the importance (in nonperturbative calculations}) of the
coupling of the [ower~lower component we first solve for the
spectrum using just Eq. (1.10a). Using 256,512, and 1024 grid
points and the scaling given by Egs. (3.25)—(3.26) the inverse
power method yields for w(0) -— 2m, the values
—6.7903764082, —6.8000704745, and —6.802483754 eV,
These correspond to FD values of 17.8727750, 4.4928286, and
1.1619701. The fixed point Padé extrapolation procedure of
the eigenvalue A = b*(w), based on the above three points,
yields w(0) — 2m, = —6.8032861579 V. Compared to the
perturbatively correct value of —6.8033256279 eV the error is
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on the order of 5% of we® (FD = 0.0544773), much larger
than the order pa® error expected.

On the other hand, using the coupled set of two equations
(1.10a)-(1.10b) the inverse power method yields for w(0) —
2m, the values —6.7904137751, —6.8001094449, and
—6.80252313203 ¢V (corresponding to FD = 178212004,
4.4390408, and 1.1076210). The fixed point Padé extrapolation
proceduse of the eigenvalue A = b%(w), based on the above three
points, yields w(() — 2m, = —6.8033256719 eV. Compared to
the perturbatively correct value of —6.8033256279 eV the error
is on the order of 0.006% of pwa (FD = —0.0000607) which
is on the order of the wa® error expected. (Note that the exact
result given in the first part of Eq. (3.21) is numerically equal
10 —6.8033256816 €V and is in fact, as it should be, closer
to our nonperturbative numerical result than the perturbative
result). This demonstrates the importance of the inclusion of
the lower—lower component, as well as providing an important
application of the inverse-power method for two coupled
Schrédinger-like equations.

For the %S, state, we will compare the numerical results of
four sets of equations. The first is the uncoupled form of Eq.
(1.12a) in which we ignore the coupling to the upper—upper
3D, states and the lower—lower components of both the 3§,
and 3D, states, The inverse power methed vields for w(() —
2m, the values —6.7899230859, —6.7995982298, and
—6.80200670225 eV corresponding to FD values of
17.8317929, 4.4779636, and 1.1537412. The fixed point Padé
extrapolation procedure of the eigenvalue A = b*(w), based on
the above three points, yields w(0) — 2m, = —6.8028074990
eV. Compared to the perturbatively correct value of [7] m[—a?/
4 4+ 1a®192] + O(a®) or —6.8028426132 eV, the error is on
the order of 5% of ua' (FD = 0.0484653) which is much
larger than the order of the po® error expected.

If we use the coupled set of Eqgs. (1.12a)—(1.12b), neglecting
the coupling to the D, states, then the inverse power method
on the three different mesh sizes plus the Padé extrapolation
procedure yields w{0) — 2m, = —0.8028082195 eV. Compared
to the perturbatively correct value of —6.8028426132 eV the
error is again, on the order of 5% of ua*, no improvement on
the previous result. If we ignore the coupling to the lower—lower
components but include the coupling to the upper—upper *D,
component (Egs. (1.12a), (1.12¢)) the results improve some-
what, but not significantly, to w(() — 2m, = —6,8028239499
eV, representing an error on the order of 2.6% of ua’.

Finally, using the fully coupled set of four equations
(1.12a)—(1.12d) the inverse power method yields for w{0) —
2m, the values -—6.7899565162, —6.7996329559, and
—6.8020417571 eV or FD = 17.7856518, 4.4300339, and
1.1053577. The fixed-point Padé extrapolation procedure of
the eigenvalue A = b*(w), based on the above three points,
yields w(0) — 2m, = —6.8028426638 eV, Compared to the
perturbatively correct vaiue of —6.8028426131 eV the error is
on the order of 0.007% of po* (FD = —0.0000698) which is
on the order of the wa® error expected. This demonstrates the
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importance of the inclusion of the lower-lower as well as the
D, component and provides an important application of the
inverse-power method for four coupled Schrodinger-like equa-
tions. (Note that in the perturbative treatment of the singlet and
triplet equations this coupling played no role whatsoever [7].)
The tabulated results for radial, as well as orbital exications,
and those for muonium are presented in Ref. [7).

In summary we have extended the inverse power method com-
bined with Padé extrapolated bound state eigenvalues from one
Schradinger-like equation to two and then four coupled Schrid-
inger-like equations. We have presented an inversion technique
for large banded and blocked matrices analogous to that pre-
sented in textbooks [ 12] for unblocked and banded matrices. We
have seen just as with earlier 18] work with uncoupled Schrid-
inger-like equation that Padé approximants were crucial in
order to obtain high order accuracy with just the set of mesh
points {here 256,512,1024). We also found that scaling was es-
sential to obtain these accurate results when two length scales
(angstroms and fermis) were present. (When the only length scale
present was angstroms, Padé€ approximants were sufficient with-
out the use of scaling). These results establish these two-body
Dirac equations as reliable relativistic bound state equations;
they are capable of reproducing perturbative resulis when treated
nonperturbatively. They share this feature in common with the
one-body Dirac equations. No other relativistic two-body bound
state equations (including the Breit and Bethe—Salpeter equa-
tions) have been successfully tested in this way.

Furthermore, the method that we have presented in this paper
is applicable to any set of coupled set of equations that are
Schrodinger-like and thus can be applied in physical problems
other than the one which we chose here.
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